

1

A Systematic Literature Review on SQL Injection Attacks

 Maryam Mehmood
1,2

, Asad Ijaz
3

1 Department of Computer Software Engineering, College of E&ME,

 National University of Science and Technology, NUST, Pakistan

2 Department of Software Engineering, NUML, Islamabad

3 Department of Mechanical Engineering, MUST AJK, Pakistan

Corresponding author: First Author (e-mail: Maryam.mehmood@numl.edu.pk).
Submitted

01-Dec-2023
Revised

13-Dec-2023
Published

21-Feb-2024

Abstract

With the increasing use of web applications, concerns for data integrity and security have increased manifolds in the

current time. The growth in quantity of internet clients and sites has made the web security circumstances

progressively extreme. Structured Query Language Injection Attack (SQLIA) is a major threat to web applications.

Over the time, many studies have explored the reasons and techniques of these attacks, and also ways to detect and

prevent them from happening. This study presents a Systematic Literature Review (SLR) based on the methodology

proposed by Kitchenham in 2007. The focus of study is on determining how and why SQLIA are done and how can

they be avoided or mitigated. The literature is considered for a time period of four years; 2016 to 2023. Moreover,

evaluation has been done, based on limitations and priorities proposed by each technique studied. Attack types with

their severity has been reviewed that may help researchers propose new techniques in order to make web

applications more secure against SQLIAs.

Keywords: SQL injection, SQL injection detection, SQL injection prevention, SQL injection types, SQL injection

techniques

1. Introduction

In order to reach out to potential customers and users across the globe, most of organizations have web-based

applications enacting as their connection to the rest of the world. Database driving web based solutions are now

considered as a backbone of global software market. In general, most of the software applications are now web

based. It is understood that web based applications need to be accessed over network by multiple devices. Database

NUML International Journal of

Engineering and Computing

Volume: 2 Issue: 2

https://numl.edu.pk/journals/nijec

Print ISSN: 2788-9629

E-ISSN: 2791-3465

DOI:https://doi.org/10.52015/nijec.v2i2.50

https://numl.edu.pk/journals/nijec

NUML-International Journal of Engineering and Computing (NIJEC) Vol.2, No.(2), Feb (2024)

2

connected at the backend of application needs to be accessed by the application for each data transaction; depending

upon the purpose and requirements the software. Applications need to process data from connected databases, as

well as data received from users (maybe another system) for every transaction. Any vulnerability in the system may

cause catastrophic damage to an organization; tarnishing the reputation in the global market. Attackers having

intentions of benefitting from these vulnerabilities may attack organizations‟ applications, thus, compromising the

data integrity and security.

Structured Query Language Injection Attack (SQLIA) is amongst the top threats, as rated by organizations like

OWASP [1] and MITRE [2]. It targets connected databases by inserting malicious code, to be processed for

achieving desired intention. For exploiting the web applications, attackers initiate attack and get access to

unauthorized data; to be manipulated according to their own will. One of the major reasons of SQLIA is poor input

validation on web applications. Imperva‟s web application attack report [3] talked about 6,800 SQLIAs per hour

made in their 6th edition.

Researchers and practitioners have proposed many solutions to overcome such problems, but each of these

solutions has its own limitations due to scope, tools, and technology constraints. In general, researchers worked on

SQL injections by considering two broad categories: detection and prevention. In detection category, researchers try

to provide multiple solutions for detecting a potential SQLIA; one that aims to differentiate attackers from users.

While in the prevention category, researchers try to provide solutions for the SQLIA under consideration.

The main focus of this study is to assess the effectiveness of already existing tools/frameworks in terms of their

detection and prevention efficiency. A Systematic Literature Review (SLR) was conducted by Lawal and et al. on

SQLIA in 2016 [1]; SLR is discussed in detail in the next section. It covered in-depth literature from 2005 onwards

on various SQL injection techniques and methods of detecting and preventing SQLIA. The paper laid a good

foundation of the topic and hence, was chosen to act as a base study for the current research.

The current study extends the research of the base paper to include literature from 2016 to 2023 to gain insight on

the latest trends of SQLIA. The next section states the methodology adopted for creating the SLR. The findings are

discussed in detail in the discussion section, followed by conclusion. The results produced by this study will help

researchers to enhance existing strategies and introducing new tools or frameworks to overcome deficiencies.

2. Research Methodology

This research uses an SLR approach, as used in the base study. SLR is now a well-known and enriched review

method in the domain of research. Instead of randomly searching the web for relevant data, SLR uses a defined

approach of finding, sorting, analyzing and interpreting available research on a topic. Broadly, it can be categorized

into three main steps:

a. Planning the research

b. Conducting the research

c. Reporting the findings

Each step can be further divided into a number of activities to make the process of SLR more methodical. Even

though it requires more effort, as compared to normal research, a structured SLR makes the whole review process to

NUML-International Journal of Engineering and Computing (NIJEC) Vol.2, No.(2), Feb (2024)

3

be less biased and ensures coverage of a wide range of settings and empirical methods. Given below is one possible

breakdown of the three steps of SLR as suggested in an EBSE Technical Report [2], Figure 1 shows the steps in a

refined manner.

Figure 1: SLR Process

A. Planning the review

i. Identify the need for conducting a review: this step requires researchers to review all existing

information in a detailed and unbiased manner.

ii. Specify the research question(s): this step requires researchers to think of the exact questions they

would like their study to answer.

iii. Develop review protocol: this step identifies the methodology to be used; including keywords to be

searched, repositories or resources to be searched, quality assessment criteria and checklists, and data

extraction and synthesis strategy.

iv. Evaluate the review protocol: this step requires a quality and feasibility check of all things specified in

the methodology.

B. Conducting the review

i. Identify the research: this step refers to determining and following a search strategy that suits the

methodology selected for the SLR.

ii. Select primary studies: this step is about finding studies that fall directly within the scope of the

research questions and provide direct evidence about them, based on inclusion/exclusion criteria.

iii. Study quality assessment: this step defines means of measuring the importance of a selected study to

the research questions.

iv. Extract and monitor data: guidelines to extract and record data are defined in this step.

NUML-International Journal of Engineering and Computing (NIJEC) Vol.2, No.(2), Feb (2024)

4

v. Synthesize data: this step is about processing and organizing the results gathered from every study

found.

C. Reporting the review

i. Specify distribution mechanisms: this step is about planning the dispersal of information gathered i.e.

reporting study in any journals and/or conferences.

ii. Format the main report: this step is about formulating templates for writing the final report of SLR.

iii. Evaluate the report: this step is about evaluating the quality of the study conducted and reported.

3. Research Questions

Phase 1: Planning the Review

The base study for his research was addressing four research questions (RQ) given below:

RQ1: What are the reasons and effects of SQL injections?

RQ2: What are the currently and widely used SQL injection techniques?

RQ3: What are the widely used SQLIA detection and prevention techniques?

RQ4: How effective are these techniques in detecting and preventing the SQL injections attacks?

For the sake of clarification, the original questions were rephrased and divided into parts to form a better

understating of the topic; Table 1 explains the motivation behind each RQ.

Data Sources

This study was conducted on four famous repositories. Table 2 shows the search criteria applied on the

repositories. Four authors took the responsibility of searching data in one repository each and hence, each source

was checked for all search strings.

Table 1: Motivation and Research Questions

Research Question Motivation

RQ1: What are the reasons behind SQLIA? Exploration of potential motives behind SQLIAs,

with their consequences.

RQ2: What are the types and/or techniques of

SQLIA?

Identification of various types of SQLIAs on web

based applications.

RQ3: How SQLIA are done? Investigation of techniques used to make SQLIAs

RQ4: What are some SQLIA detection and

prevention techniques?

Examination of techniques proposed by researchers

in detecting and combating SQLIAs

Table 2: Data Source and Search Criteria

Electronic

repositories

1. IEEE Xplore (https://ieeexplore.ieee.org/Xplore/home.jsp)

2. Springer (https://www.springer.com/in)

3. ACM Digital Library (https://dl.acm.org/)

4. ScienceDirect (https://www.sciencedirect.com/)

Language English

https://ieeexplore.ieee.org/Xplore/home.jsp
https://www.springer.com/in
https://dl.acm.org/
https://www.sciencedirect.com/

NUML-International Journal of Engineering and Computing (NIJEC) Vol.2, No.(2), Feb (2024)

5

Publication period January 2016 to March 2023

Searched items Books, journals and conference papers having any of the search strings in

their title or keywords

Search Strings

The search strings were taken from the base study and were also derived from keywords used while rephrasing

the research questions. Table 3 shows the search strings and their alternatives used to conduct the study.

Table 3: Search Strings and Alternatives

Keywords Alternatives

SQL injection 1. SQLIA

2. SQL injection attacks

3. Structured Query Language Injection Attacks

4. Reasons for SQLIA

SQL injection detection 1. SQL injection attacks detection and prevention techniques

2. Detect SQL Injection Attacks

SQL injection prevention 1. SQL Injection attacks and defense

2. SQL Injection defense mechanisms

3. SQL injection attacks detection and prevention techniques

4. Prevent SQL Injection Attacks

SQL injection types 1. Why SQLIA

SQL injection techniques 1. SQL injection attacks detection and prevention techniques

2. Executing SQLIA

Inclusion and Exclusion Criteria

After the basic search, only the articles matching the inclusion criteria were considered for the study and the

remaining or those falling in the exclusion criteria were dropped from the analysis.

Inclusion Criteria

i. Articles published in journals, workshops and conferences related to SQLIA

ii. Articles having the search strings in their titles

iii. Articles having the search strings in their keywords

iv. Articles that deal with the research questions

v. Articles published “between” January 2016 to December 2023

vi. Articles having English as primary language

Exclusion criteria

i. Articles that are not related to the research objective of the study

ii. Articles not in English

iii. Articles not falling in the decided timeline

iv. Articles not having any of the search strings in their title and/or keywords.

Quality Evaluation (QE)

NUML-International Journal of Engineering and Computing (NIJEC) Vol.2, No.(2), Feb (2024)

6

The finalized articles were evaluated by each author via a pre-defined quality checklist. Each selected article was

evaluated on a scale of 0 to 1 for all five research questions, in order to check its importance in providing answer(s)

to any or all of the RQs identified for the study.

 An article was assigned a „1′ against a question it answered completely.

 An article was assigned a „0.5‟ against a question it answered partially.

 An article was assigned a „0‟ against a question it failed to answer at all.

Phase 2: Conducting the Review

Primary Study Selection

A total of 113 articles were found against the search strings in all four repositories. Each author applied the inclusion

and exclusion criteria on the articles found in the repository he was working on. After the application of the criteria,

a total of 72 articles were left for the primary study; which comprises of almost 64% of the total articles found by all

four authors. The selected primary study articles included 37 journal papers (51%), 30 papers from conference

proceedings (42%) and 4 book chapters (6%).

Table 4 gives a summary of each repository in terms of total articles found it in for the primary study. It also shows

how many articles contributed to each of the research questions identified for the study. Figure 2 compares the

contribution of each repository for the research questions.

Table 4: Primary Study Stats

Source Primary Articles RQ1 RQ2 RQ3 RQ4

Springer 25 14 5 11 20

IEEE Xplore 7 6 4 0 5

ACM Digital Library 17 9 17 0 16

ScienceDirect 23 13 5 17 11

Figure 2: Repository contributions for each RQ

NUML-International Journal of Engineering and Computing (NIJEC) Vol.2, No.(2), Feb (2024)

7

Data Extraction

Each author was responsible for extracting relevant data from the primary articles found in his respective

repository. Each article was evaluated on the quality criteria defined in section “Quality Evaluation (QE)” above.

Table 5 provides the list of selected articles along with their total QE scores. The last column in the table gives a

percentage of the contribution each article made to the SLR.

Table 5: QE of Selected Articles

Paper ID Q1 Q2 Q3 Q4 Total %

Article#1 [3] 0 0 0.5 1 1.5 38

Article#2 [4] 1 0 0 1 2 50

Article#3 [5] 1 0 0 1 2 50

Article#4 [6] 0 0 0 1 1 25

Article#5 [7] 1 0.5 1 0.5 3 75

Article#6 [8] 1 0 1 0.5 2.5 63

Article#7 [9] 1 0.5 0 1 2.5 63

Article#8 [10] 0 0 0.5 1 1.5 38

Article#9 [11] 1 0 0 1 2 50

Article#10 [12] 0 0 0.5 1 1.5 38

Article#11 [13] 1 0 0.5 1 2.5 63

Article#12 [14] 1 1 1 1 4 100

Article#13 [15] 0 0 0 0 0 0

Article#14 [16] 0.5 0.5 0 0.5 1.5 38

Article#15 [17] 0 0.5 0 0.5 1 25

Article#16 [18] 0.5 1 0 0.5 2 50

Article#17 [19] 1 1 0 1 3 75

Article#18 [20] 0.5 0 0 1 1.5 38

Article#19 [21] 1 1 1 1 4 100

Article#20 [22] 0 0 0 1 1 25

Article#21 [23] 0 0 0 0 0 0

Article#22 [24] 0.5 0.5 0 1 2 50

Article#23 [25] 0.5 0 0.5 1 2 50

Article#24 [26] 0.5 0.5 0 0.5 1.5 38

Article#25 [27] 0 0 0 0.5 0.5 13

Article#26 [28] 0.5 0 0 0 0.5 13

Article#27 [29] 0 1 0 0.5 1.5 38

Article#28 [30] 0.5 0.5 0 0.5 1.5 38

NUML-International Journal of Engineering and Computing (NIJEC) Vol.2, No.(2), Feb (2024)

8

Article#29 [31] 1 0.5 0 0.5 2 50

Article#30 [32] 0 0.5 0 1 1.5 38

Article#31 [33] 1 1 1 1 4 100

Article#32 [34] 0 0 0.5 0 0.5 13

Article#33 [35] 0 0 0 0 0 0

Article#34 [36] 0.5 0 0.5 0 1 25

Article#35 [37] 0 0 0 0 0 0

Article#36 [38] 0 0 0.5 0.5 1 25

Article#37 [39] 0 0 0.5 0.5 1 25

Article#38 [40] 1 0 0 1 2 50

Article#39 [41] 1 1 0 0.5 2.5 63

Article#40 [42] 0 0 0 1 1 25

Article#41 [43] 0.5 0 0 0 0.5 13

Article#42 [44] 0 1 0 0.5 1.5 38

Article#43 [45] 0 0 0.5 1 1.5 38

Article#44 [46] 1 0.5 0.5 1 3 75

Article#45 [47] 1 0 0.5 1 2.5 63

Article#46 [48] 1 1 0 1 3 75

Article#47 [49] 1 0 0.5 0 1.5 38

Article#48 [50] 1 0 1 0 2 50

Article#49 [51] 0.5 1 0 1 2.5 63

Article#50 [52] 0.5 0 0 1 1.5 38

Article#51 [53] 0.5 0 0.5 0.5 1.5 38

Article#52 [54] 1 1 0 0 2 50

Article#53 [55] 0 0.5 0 0.5 1 25

Article#54 [56] 0.5 0 0.5 0.5 1.5 38

Article#55 [57] 0 1 0 1 2 50

Article#56 [58] 1 0.5 0 0.5 2 50

Article#57 [59] 0 1 0 1 2 50

Article#58 [60] 0.5 0 0 0 0.5 13

Article#59 [61] 0 0 1 0.5 1.5 38

Article#60 [62] 0 1 0 1 2 50

Article#61 [63] 1 1 0.5 1 3.5 88

Article#62 [64] 1 1 0 0 2 50

Article#63 [65] 0.5 0 0.5 0 1 25

Article#64 [66] 0 0 0.5 0 0.5 13

NUML-International Journal of Engineering and Computing (NIJEC) Vol.2, No.(2), Feb (2024)

9

Article#65 [67] 1 1 1 1 4 100

Article#66 [68] 1 0.5 0 0 1.5 38

Article#67 [69] 0 0 0.5 0 0.5 13

Article#68 [70] 0 0 0 0.5 0.5 13

Article#69 [71] 0 0 0.5 0 0.5 13

Article#70 [72] 0 0 0 0 0 0

Article#71 [73] 0 0 0 0 0 0

Article#72 [74] 0 1 0 0.5 1.5 38

Data Synthesizing

Figure 3 is based on the last two columns of Table 5 and it provides a summarized view of the overall

contribution the primary study articles have made to the SLR. The QE score had an average of 40% approximately

and hence, the articles included in reporting were selected on a threshold of at least 30% contribution. This means

that from the selected 73 articles of the primary study, 48 (almost 67%) were included in the final reporting of the

SLR.

Figure 3: Collective QE score of primary study articles

NUML-International Journal of Engineering and Computing (NIJEC) Vol.2, No.(2), Feb (2024)

10

4. DISCUSSION

This section discusses the data gathered from all the selected articles mentioned above, in relation to the RQs

identified by the study. SQLIAs are considered a champion amongst the commonly occurring web application

hazards [7].

RQ1. What are the types/techniques of SQLIA?

The researchers have classified SQLIAs in many different ways. SQL statements can be altered very easily by the

intruders [64]. A broad categorization [14][49] simply divides immediate execution of a malicious code as First

Order Attack and a time-based triggered execution as Second order attack. Another, more precise classification

[5],[64],[9],[13] is given in Table 6, where the attacks are classified into eight types along with their severity levels.

Table 6: Different types of SQLIAs

SQLIA

Type

Process Query Target Risk level

Tautology ▪ Identify injectable

parameters

▪ Bypass

authentication

▪ Extract data

SELECT * FROM userdetails

WHERE login=„anyone‟ or „1=1‟

and password= anything‟ or

„x‟=„x‟

Returns all

users details

Medium

Incorrect

Logical Query

▪ Identify injectable

parameters

▪ Retrieve database

fingerprint from

generated error

message

SELECT * FROM userdetails

WHERE login='kao"' AND

password =

Returns some

key information

of the server like

database server,

version, platform

etc.

Low

Piggyback ▪ Extract data

▪ Modify dataset by

appending

malicious query at

the end of valid

query using semi-

colon(;)

▪ Execute remote

commands

SELECT * FROM userdetails

WHERE userid=„admin‟ and

password=„admin‟; drop table

user_details–

Performs

database

operations as

deletion, update,

and addition

High

Boolean-

based Blind

SQL Injection

▪ Extract data

▪ Inject series of

true/false queries

to database

▪ Error message

shows presence of

protection

mechanism,

otherwise

successful attack

SELECT * FROM emp_name,

emp_address, gender from

employee where 1=0; drop

employee

SELECT * FROM emp_name,

emp_address, gender from

employee where1=1;drop

employee

An attacker

gets insight about

the database

whether it is

secure or not.

Low

NUML-International Journal of Engineering and Computing (NIJEC) Vol.2, No.(2), Feb (2024)

11

Time based

Blind SQL

Injection

▪ Identify injectable

parameters

▪ Bypass

authentication

▪ Extract data

▪ Attacker performs

time intensive

operations using

time based

command

“SLEEP”

SELECT name, price FROM

store_table WHERE id= „46‟ and

if(1=1, sleep(10) , false)

Return

response time

database has

taken to respond

to the user‟s

query.

Low

UNION-

based SQL

Injection

▪ Gain unauthorized

access

▪ Extract data

▪ Malicious SQL

query appended

with valid SQL

query by using

UNION command

SELECT * FROM table

WHERE login=‟‟ UNION

SELECT ** FROM table

WHERE No=12500 -- AND

password =‟‟ AND pin=

Combine the

result sets of two

or more

statements

Medium

Stored

Procedure

▪ Gain unauthorized

access

▪ To execute the

stored procedure

SHUTDOWN

SELECT * FROM userdetails

WHERE login= 'kao' AND

password ='lai'; SHUTDOWN;--;

Execute built-

in functions

using malicious

SQL codes

Medium,

high

Alternate

Encodings

 SELECT * FROM table

WHERE login=

'kao';exec(char(0x73697

574646f776e)) –„ AND password

='lai' AND pin =; SHUTDOWN;--

;

Modify the

injection

statement by

alternating

encoding to

escape from

detection

Medium,

high

RQ2. What are the reasons behind SQLIA?

Simple SQLIAs are not difficult to initiate, human errors and negligence during development make an attackers

work easy [63]. Successful SQLIAs are often very harmful. There‟s no limit to what proportion of harm can be

caused by an intruder. Given below is a list of most common reasons reported behind a successful SQLIA in the

literature [7][15][33]; most of which narrow down to human errors or bad development practices:

 The data compromised was very sensitive and/or worthwhile to the attacker.

 The application had insecure development architecture.

 The application had poorly filtered strings and incorrect type handling.

 Database access rights were not properly assigned to the correct authorities.

 Security design was compromised due to budget shortfalls.

 Mismatched data types were common.

 Insufficient input validation protocols were implemented.

NUML-International Journal of Engineering and Computing (NIJEC) Vol.2, No.(2), Feb (2024)

12

 Detailed error messages were not displayed to give proper warnings.

 Dynamic SQL statements were constructed using input content to access the database.

 The code used stored procedures, which are passed as strings containing unfiltered user input.

RQ3: How SQLIA are done?

The SQL injection attacks may be carried out manually [3], or through a few software tools [75] like: jSQL

Injection, Whitewidow, Blind-Sql-Bitshifting, SQLMap, SQLNinja, etc. But no matter whether the attack is manual

or tool based, it always begins by constructing a special statement to observe the SQL vulnerabilities existing in the

web program [3]. There are a few things that can help an attacker formulate a query suitable for conducting an

SQLIA [33],[21]:

 Identify Injectable Parameters: these textual parameters allow users to request information from the

database via an HTTP request. When this done without proper validation, an attacker can most likely inject

an SQL query in it.

 Perform database fingerprinting: knowing the version of a database enables an attacker to construct a

supported query format.

 Determine database schema: knowing the structure of the database makes it easier for an attacker to extract

or manipulate data.

Literature reports [14],[50],[61],[21] that the process of SQLIA is performed using different input parameters like:

 User input: web applications receive inputs from user via HTTP (GET or POST) requests. An attacker can

inject SQL command disguised as user input.

 Cookies: an attacker can easily tamper a cookie‟s contents and embed a malicious code in it.

 Server variables: an attacker can place an SQLIA directly into the header of the variable, which can be

triggered as soon as the query to log the server variable is issued.

RQ4: What are some SQLIA detection and prevention techniques?

Researchers talk about many development practices and fully automated techniques for the detection and

prevention of SQLIAs. Sooner an injection attack or a potential chance of an injection attack can be detected,

lesser will be the damage that follows.

Development Practices

Following are some commonly preached development practices that can help web application designers to

prevent SQLIAs from happening.

Defensive Coding Practices [19]

Such practices focus on writing the code in a manner that can prevent insertion of malicious code [13].

Although they do involve chances of human error and are not as reliable as automated techniques, they can still

help the cause.

a. Input examination: verification of user input ensures that the input criteria defined for the application is

being met. Usually, a type-check against a parameter or a regular expression to validate an input fall

within this category. For example, numeric inputs restrict the usage of alphabets or special characters.

NUML-International Journal of Engineering and Computing (NIJEC) Vol.2, No.(2), Feb (2024)

13

These checks are often ignored while working with strings; hence, a validation mechanism is mandatory

to prevent SQLIAs.

b. Encoding of inputs: meta-characters inserted in input strings can be interpreted as valid SQL tokens by

the parser. A practice of either restricting such meta-characters or using functions to encrypt all meta-

characters to be interpreted as general characters can help.

c. Pattern matching (positive validation): this routine checks good inputs against bad inputs. Unlike

negative validation, which searches for forbidden patterns, it specifies all inputs which are legal.

d. Identification of input source(s): insertion of data is done via multiple sources and thus, these sources

can act as a path for an attacker to introduce a SQLIA.

Defense at Platform-Level

Imprecise configurations in the database increase the chances of an SQLIA. Thus, careful practices while

handling database platforms can help against SQLIAs.

a. Correct Configuration of Web Server: a web server can be properly configured in three ways [7]:

i. Change initial configuration

ii. Install security patches in a timely manner

iii. Turn off error messages

iv. Correct Configuration of Database: the database can be safely configured by using principle of

least privilege i.e. grant access to authorized user only. This can be done by [7]:

b. Modifying the initial configuration of the database

c. Upgrading the database timely

d. Proxy filters: Security Policy Descriptor Language (SPDL) provides a security gateway for input data to

flow to web applications. Being highly expressive, SPDL allows developers to apply constraints and

special transformations to the input. One drawback to this approach is that it relies heavily on human-

knowledge to know which data and/or patterns need to be filtered.

Automated Techniques:

In contrast to development practices, there are a few automated techniques to prevent an SQLIA from causing

havoc.

a. Machine learning: Some researchers [7],[13],[4],[5] utilize machine learning technologies to detect

SQLIAs. This approach has two stages

i. Learning stage: it uses training sets to build detection models

ii. Classification stage: it uses the formulated models to label a query as an injection attack

 The quality of the training set determines how well the model will perform. Support Vector Machine (SVM)

follows this strategy by analyzing original query and suspicious query and based on the confusion matrix

formulated, it prevents a likely SQLIA from being executed [12],[61].

NUML-International Journal of Engineering and Computing (NIJEC) Vol.2, No.(2), Feb (2024)

14

b. Stored Procedure Approach: This technique is a mixture of static and dynamic analysis and works in a

similar manner. The static module checks the source code and the dynamic module checks the queries at

runtime [13].

i. Static analysis: detects all possible weaknesses in an application which can aid an SQLIA before

deployment. This technique‟s efficiency depends on how accurately the input validity module has worked.

This method has no run time overhead. But the analysis of code has two major constraints:

• It makes the method very host language-specific and cannot detect all types of SQLIAs.

• It requires access to source code, which is itself a risk.

ii. Dynamic analysis: used for analysis of runtime SQL queries and it processes every query before posting it

to the database server.

c. Taint Analysis: This technique modifies the PHP interpreter to track user input and verify if it does not

modify SQL queries. The restriction to this technique is it uses certain types of filters to judge the input and

considers it sufficient to detect an input as an attack [5] and [19].

d. Aho–Corasick Algorithm: This technique looks for a string of a particular arrangement inside the query and

calculates the suspicion level of it being an SQLIA [7] and [8].

Table 7: SQL Prevention and Detection Techniques

Prevention Technique Description

Defensive Coding Practices

Input Examination Verifies user input against predefined criteria, such

as type-checking or regular expressions also

prevents SQL injection.

Encoding of Inputs Restricts meta-characters and encrypts them in

preventing interpretation as SQL tokens by the

parser.

Pattern Matching (Positive Validation) Specifies all legal inputs and compares against

them and identifies potentially malicious inputs.

Identification of Input Sources Identifies and secures all sources through which

data is inserted to prevent potential paths for SQL

injection attacks.

Defense at Platform-Level

Correct Configuration of Web Server Changes initial configurations, installs security

patches, and turns off error messages

Configuration of Database Applies the principle of least privilege by

modifying initial configurations, upgrading

databases, and restricting access to authorized

users.

Proxy Filters (SPDL) Uses Security Policy Descriptor Language (SPDL)

and applies constraints and transformations to input

data, though reliance on human knowledge may be

a drawback.

NUML-International Journal of Engineering and Computing (NIJEC) Vol.2, No.(2), Feb (2024)

15

Automated Techniques

Machine Learning Utilizes machine learning, e.g., Support Vector

Machine (SVM), with a learning stage using

training sets and a classification stage to label

queries as injection attacks based on formulated

models.

Stored Procedure Approach Combines static and dynamic analysis; static

analysis detects weaknesses pre-deployment, and

dynamic analysis processes queries at runtime.

Taint Analysis Modifies PHP interpreter to track user input and

verifies its impact on SQL queries, using certain

filters to detect potential attacks.

Aho–Corasick Algorithm Searches for specific string arrangements in queries

and calculates suspicion levels of SQL injection

attacks

5. Conclusion

This systematic literature review has been produced based on guidelines provided by Kitchenham et. al [2]. It

explored four repositories for relevant literature; including 113 articles. Based on our exclusion and inclusion

criteria, 72 articles were shortlisted for the primary study and then the quality analysis applied on the primary study

yielded 48 articles to be finally included in the analysis of the research questions. The study talks about primary

reasons behind conducting SQLIAs. Different types of SQL Injection attacks have been reviewed in light of their

classification category, process of conduction, query format, target and risk level. A detailed discussion on SQLIA

detection and prevention technique has also been done by the study. The procedures and steps have been discussed

to help new researchers in proposing advanced techniques to detect and prevent the SQLIAs. The findings of the

study show that all proposed SQLIA prevention and detection techniques have their own limitations and thus,

relying on a single technique might not solve the problem. Instead, multiple techniques must be combined and

deployed in order to deal with diverse kinds of SQLI attacks.

References

[1] Lawal, M.A., Sultan, A.B.M., & Shakiru, A.O. (2016). Systematic Literature Review on SQL Injection

Attack. International Journal of Soft Computing, 11(1), 26-35.

[2] Kitchenham, B. A. & Charters, S. (2007). Guidelines for performing Systematic Literature Reviews in

Software Engineering (EBSE 2007-001). Keele University and Durham University Joint Report.

[3]Chen, T. W. C., & Sun, X. (2016). A Countermeasure to SQL Injection Attack for Cloud. Wireless Personal

Communications.

NUML-International Journal of Engineering and Computing (NIJEC) Vol.2, No.(2), Feb (2024)

16

[4] Kao, D.-Y., Lai, C.-J., & Su, C.-W. (2018). A Framework for SQL Injection Investigations: Detection,

Investigation, and Forensics. Paper presented at the 2018 IEEE International Conference on Systems, Man, and

Cybernetics (SMC).

[5] Ghafarian, A. (2017). A hybrid method for detection and prevention of SQL injection attacks. Paper

presented at the 2017 Computing Conference.

[6] Saoudi L., Adi K., Boudraa Y. (2020) A Rejection-Based Approach for Detecting SQL Injection

Vulnerabilities in Web Applications. In: Benzekri A., Barbeau M., Gong G., Laborde R., Garcia-Alfaro J. (eds)

Foundations and Practice of Security. FPS 2019. Lecture Notes in Computer Science, vol 12056. Springer, Cham

[7] Bokey, V., Datar, K., Jabalpure, D., Suryawanshi, K., Lokhande, V., & Kale, P. (2018). A Review on

Different Methodologies to Counter SQL Injection Attack. International Journal of Scientific Research in

Science and Technology (IJSRST), 4(2), 1528-1535.

[8] Yeole , R., Ninawe, S., Dhore, P., & Tembhare, P. U. (2017). A Study on Detection and Prevention of SQL

Injection Attack. International Research Journal of Engineering and Technology (IRJET), 4(3), 435-438.

[9] Faker, S. A., Muslim, M. A., & Dachlan, H. S. (2017). A Systematic Literature Review on SQL Injection

Attacks Techniques and Common Exploited Vulnerabilities. International Journal of Computer Engineering and

Information Technology, 9(12), 284-291.

[10] Zhu, Y., Zhang, G., Lai, Z., & Niu, B. (2018). A Two-Tiered Defence of Techniques to Prevent SQL

Injection Attacks, 1.

[11] Saidu, M., Imran, A., Kashif, G., Qureshi, N., & Fo, M. (2019). An algorithm for detecting SQL injection

vulnerability using black-box testing. Journal of Ambient Intelligence and Humanized Computing, 0(0), 0.

http://doi.org/10.1007/s12652-019-01235-z

[12] Awasthi, R., & Mangal, D. (2016). An Approach Based on SVM Classifier to Detect SQL Injection Attack.

International Journal of Scientific Research in Science, Engineering and Technology (IJSRSET), 2(3), 256-260.

[13] Agarwal, R., & Sirsikar, S. (2019). An Efficient Technique for finding SQL Injection using Reverse Proxy

Server. International Research Journal of Engineering and Technology (IRJET), 6(9), 1564-1569.

[14] Kumar, A. & Taterh, S. (2016). ANALYSIS OF VARIOUS LEVELS OF PENETRATION BY SQL

INJECTION TECHNIQUE THROUGH DVWA. Journal of Advanced Computing and Communication

Technologies, 4(2), 28-32.

[15] Priyadharshini, S. and Rajmohan, R. (2017). Analysis on Database Security Model Against NOSQL

Injection. International Journal of Scientific Research in Computer Science, Engineering and Information

Technology, 2(2), 168-171.

[16] Yadav, N., & Shekokar, N. (2018). Analysis on Injection Vulnerabilities of Web Application Á Injection

vulnerability Á Attack Á Security. Springer Singapore. http://doi.org/10.1007/978-981-10-8339-6

[17] Lokhande, P. S., & Meshram, B. B. (2016, March). Analytic Hierarchy Process (AHP) to Find Most

Probable Web Attack on an E-Commerce Site. In Proceedings of the Second International Conference on

Information and Communication Technology for Competitive Strategies (pp. 1-6).

http://doi.org/10.1007/s12652-019-01235-z
http://doi.org/10.1007/978-981-10-8339-6

NUML-International Journal of Engineering and Computing (NIJEC) Vol.2, No.(2), Feb (2024)

17

[18] Bandhakavi, S., Bisht, P., Madhusudan, P., & Venkatakrishnan, V. N. (2007, October). CANDID:

preventing sql injection attacks using dynamic candidate evaluations. In Proceedings of the 14th ACM

conference on Computer and communications security (pp. 12-24).

[19] Mavromoustakos, S., Patel, A., Chaudhary, K., Chokshi, P., & Patel, S. (2016, December). Causes and

prevention of sql injection attacks in web applications. In Proceedings of the 4th International Conference on

Information and Network Security (pp. 55-59).

[20] Khanna, S., & Verma, A. K. (2018). Classi fication of SQL Injection Attacks Using Fuzzy Tainting, 463–

469. http://doi.org/10.1007/978-981-10-3373-5

[21] Aliero, M. S., Ardo, A. A., Ghani, I. & Atiku, M. (2016). Classification of Sql Injection Detection And

Prevention Measure. IOSR Journal of Engineering (IOSRJEN), 6(2), 06-17.

[22] Zhao J., Dong T., Cheng Y., Wang Y. (2020) CMM: A Combination-Based Mutation Method for SQL

Injection. In: Miao H., Tian C., Liu S., Duan Z. (eds) Structured Object-Oriented Formal Language and Method.

SOFL+MSVL 2019. Lecture Notes in Computer Science, vol 12028. Springer, Cham

[23] Kesarwani, M., Kaul, A., Singh, G., Deshpande, P. M., & Haritsa, J. R. (2018). Collusion-Resistant

Processing of SQL Range Predicates. Data Science and Engineering, 3(4), 323-340.

[24] Stasinopoulos, A., Ntantogian, C., & Xenakis, C. (2018). Commix : automating evaluation and exploitation

of command injection vulnerabilities in Web applications. International Journal of Information Security.

http://doi.org/10.1007/s10207-018-0399-z

[25] Das, D., & Sharma, U. (2017). Defeating SQL injection attack in authentication security : an experimental

study. International Journal of Information Security. http://doi.org/10.1007/s10207-017-0393-x

[26] Chenyu, M., & Fan, G. (2016, August). Defending SQL injection attacks based-on intention-oriented

detection. In 2016 11th International Conference on Computer Science & Education (ICCSE) (pp. 939-944).

IEEE.

[27] Antunes, N., & Vieira, M. (2017). Designing vulnerability testing tools for web services: approach,

components, and tools. International Journal of Information Security, 16(4), 435-457.

[28] Pan, Y., Sun, F., Teng, Z., White, J., Schmidt, D. C., Staples, J., & Krause, L. (2019). Detecting web attacks

with end-to-end deep learning. Journal of Internet Services and Applications, 10(1), 1-22.

[29] Basta, C., Elfatatry, A., & Darwish, S. (2016). Detection of SQL injection using a genetic fuzzy classifier

system. International Journal of Advanced Computer Science and Applications, 7(6), 129-137.

[30] Rauti, S., Teuhola, J., & Leppänen, V. (2015, August). Diversifying SQL to prevent injection attacks.

In 2015 IEEE Trustcom/BigDataSE/ISPA (Vol. 1, pp. 344-351). IEEE.

[31] Khalid, A. &Yousif, M. F. M. (2016). Dynamic Analysis Tool for Detecting SQL Injection. International

Journal of Computer Science and Information Security (IJCSIS), 14(12), 224-232.

[32] Joshi, P. N., Ravishankar, N., Raju, M., & Ravi, N. C. (2018). Encountering SQL Injection in Web

Applications. Paper presented at the 2018 Second International Conference on Computing Methodologies and

Communication (ICCMC).

http://doi.org/10.1007/978-981-10-3373-5
http://doi.org/10.1007/s10207-018-0399-z
http://doi.org/10.1007/s10207-017-0393-x

NUML-International Journal of Engineering and Computing (NIJEC) Vol.2, No.(2), Feb (2024)

18

[33] Sharma, C., Jain, S. C. & Sharma, A. K. (2016). Explorative Study of SQL Injection Attacks and

Mechanisms to Secure Web Application Database- A Review. International Journal of Advanced Computer

Science and Applications, 7(3), 79-87.

[34] Safianu, O., Twum, F. and Hayfron-Acquah, J. B. (2016). Information System Security Threats and

Vulnerabilities: Evaluating the Human Factor in Data Protection. International Journal of Computer

Applications, 143(5), 08-14.

[35] Gbedawo, V., Agbesi, K. and Adukpo, T. (2017). Intrusion Detection on Campus Network, the Open source

approach: Accra Technical University Case Study. International Journal of Computer Applications, 164(6), 20-

27.

[36] Zech, P., Felderer, M., & Breu, R. (2019). Knowledge-based security testing of web applications by logic

programming. International Journal on Software Tools for Technology Transfer, 21(2), 221-246.

[37] Ramachandra, A. C., & Bhattacharya, S. (2020). Literature Survey on Log-Based Anomaly Detection

Framework in Cloud. In Computational Intelligence in Pattern Recognition (pp. 143-153). Springer, Singapore.

[38] Hazaa, M. A. S., Algabry, M. A. S. and Altayar, M. M. Q. (2016). METHODS OF SAFEGUARDING THE

SITES FROM SQL INJECTION. Saba Journal of Information Technology and Netwroking (S.J.I.T.N), 4, 20-28.

[39] Geneiatakis, D. (2015, December). Minimizing databases attack surface against sql injection attacks.

In International Conference on Information and Communications Security (pp. 1-9). Springer, Cham.

[40] Feng K., Gu X., Peng W., Yang D. (2019) Moving Target Defense in Preventing SQL Injection. In: Sun X.,

Pan Z., Bertino E. (eds) Artificial Intelligence and Security. ICAIS 2019. Lecture Notes in Computer Science,

vol 11635. Springer, Cham

[41] Ross, K., Moh, M., Moh, T. S., & Yao, J. (2018, March). Multi-source data analysis and evaluation of

machine learning techniques for SQL injection detection. In Proceedings of the ACMSE 2018 Conference (pp. 1-

8).

[42] Eassa, A. M., Elhoseny, M., & El-bakry, H. M. (2018). NoSQL Injection Attack Detection in Web

Applications Using RESTful Service 1, 44(6), 435–444.

[43] Pathak, M. P., Khan, N. K. and Tantak, T. C. (2016). Novel Approach To Detect and Prevent Web Attacks.

International Research Journal of Engineering and Technology (IRJET), 3(5), 504-510.

[44] Relan, K., & Singhal, V. (2016, March). Pentest Ninja: XSS And SQLi Takeover Tool. In Proceedings of

the Second International Conference on Information and Communication Technology for Competitive

Strategies (pp. 1-2).

[45] Arumugam, C. (n.d.). Prediction of SQL Injection Attacks in Web Applications (Vol. 1). Springer

International Publishing. http://doi.org/10.1007/978-3-030-24305-0

[46] Bittal, V., & Banerjee, S. (n.d.). Prevention Guidelines of SQL Injection Database Attacks : An

Experimental Analysis, 23–32. http://doi.org/10.1007/978-81-322-2553-9

[47] Agarwal, S., & Singh, U. (2017). PREVENTION OF SQL INJECTION ATTACK IN WEB

APPLICATION WITH HOST LANGUAGE. International Research Journal of Engineering and Technology

(IRJET), 4(11), 1468-1470.

http://doi.org/10.1007/978-3-030-24305-0
http://doi.org/10.1007/978-81-322-2553-9

NUML-International Journal of Engineering and Computing (NIJEC) Vol.2, No.(2), Feb (2024)

19

[48] Castillo, R. E., Caliwag, J. A., Pagaduan, R. A., & Nagua, A. C. (2019, March). Prevention of SQL injection

attacks to login page of a website application using prepared statement technique. In Proceedings of the 2019 2nd

International Conference on Information Science and Systems (pp. 171-175).

[49] George, T. K., James, R. & Jacob, P. (2016). Proposed Hybrid model to detect and prevent SQL Injection.

International Journal of Computer Science and Information Security (IJCSIS), 14(6), 441-448.

[50] Manjunatha, K. M. & Kempanna, M. (2019). RAMIFICATION ANALYSIS OF SQL INJECTION

DETECTION IN WEB APPLICATION. International Journal of Computer Science and Information Security

(IJCSIS), 17, 132-138.

[51] Singh, T., & Aksanli, B. (2019, November). Real-time Traffic Monitoring and SQL Injection Attack

Detection for Edge Networks. In Proceedings of the 15th ACM International Symposium on QoS and Security

for Wireless and Mobile Networks (pp. 29-36).

[52] Bherde, G. P., & Pund, M. (2016). Recent attack prevention techniques in web service applications. Paper

presented at the 2016 International Conference on Automatic Control and Dynamic Optimization Techniques

(ICACDOT).

[53] Chen, Z., Li, M., Cui, X., & Sun, Y. (2019). Research on SQL Injection and Defense Technology. Springer

International Publishing. http://doi.org/10.1007/978-3-030-24268-8

[54] Ma, L., Zhao, D., Gao, Y., & Zhao, C. (2019). Research on SQL Injection Attack and Prevention

Technology Based on Web. Paper presented at the 2019 International Conference on Computer Network,

Electronic and Automation (ICCNEA).

[55] Sadasivam, G. K., & Hota, C. (2015, February). Scalable honeypot architecture for identifying malicious

network activities. In 2015 international conference on emerging information technology and engineering

solutions (pp. 27-31). IEEE.

[56] Nagpal, B., Chauhan, N., & Singh, N. (2016). SECSIX : security engine for CSRF , SQL injection and XSS

attacks. International Journal of System Assurance Engineering and Management.

[57] Liu, M., Li, K., & Chen, T. (2019, July). Security testing of web applications: a search-based approach for

detecting SQL injection vulnerabilities. In Proceedings of the Genetic and Evolutionary Computation Conference

Companion (pp. 417-418).

[58] Maheshwarkar, B., & Maheshwarkar, N. (2016, March). SIUQAPTT: SQL Injection Union Query Attacks

Prevention Using Tokenization Technique. In Proceedings of the Second International Conference on

Information and Communication Technology for Competitive Strategies (pp. 1-4).

[59] Ceccato, M., Nguyen, C. D., Appelt, D., & Briand, L. C. (2016, September). SOFIA: An automated security

oracle for black-box testing of SQL-injection vulnerabilities. In 2016 31st IEEE/ACM International Conference

on Automated Software Engineering (ASE) (pp. 167-177). IEEE.

[60] Kozik, R., & Choraś, M. (2016, April). Solution to data imbalance problem in application layer anomaly

detection systems. In International Conference on Hybrid Artificial Intelligence Systems (pp. 441-450). Springer,

Cham.

http://doi.org/10.1007/978-3-030-24268-8

NUML-International Journal of Engineering and Computing (NIJEC) Vol.2, No.(2), Feb (2024)

20

[61] Ladole, A., & Phalke, D. A. (2016). SQL Injection Attack and User Behavior Detection by Using Query

Tree, Fisher Score and SVM Classification. International Research Journal of Engineering and Technology

(IRJET), 3(6), 1505-1509.

[62] Zhang, H., Zhao, B., Yuan, H., Zhao, J., Yan, X., & Li, F. (2019, October). SQL Injection Detection Based

on Deep Belief Network. In Proceedings of the 3rd International Conference on Computer Science and

Application Engineering (pp. 1-6).

[63] Kaur, D., & Kaur, P. (2017). SQLI Attacks : Current State and Mitigation in SDLC, 673–680.

http://doi.org/10.1007/978-981-10-3153-3

[64] Som, S., Sinha, S., & Kataria, R. (2016). Study on sql injection attacks: Mode detection and prevention.

International Journal of Engineering Applied Sciences and Technology, Indexed in Google Scholar, ISI etc.,

Impact Factor: 1.494, 1(8), 23-29.

 [65] Sahasrabuddhe, A., Naikade, S., Ramaswamy, A., Sadliwala, B. and Futane, P. (2017). Survey on Intrusion

Detection System using Data Mining Techniques. International Research Journal of Engineering and Technology

(IRJET), 4(5), 1780-1784.

[65] Kumari, Y. (2019). Survey on Web Application Vulnerabilities. International Research Journal of

Engineering and Technology (IRJET), 6(9), 922-925.s

[67] Saidu, M., Kashif, A., Qureshi, N., & Fermi, M. (2020). Systematic Review Analysis on SQLIA Detection

and Prevention Approaches. Wireless Personal Communications. Springer US. http://doi.org/10.1007/s11277-

020-07151-2

[68] Silva, R., Barbosa, R., & Bernardino, J. (2016, July). Testing Snort with SQL Injection Attacks.

In Proceedings of the Ninth International C* Conference on Computer Science & Software Engineering (pp.

129-130).

[69] Bhosale, T., More, S. and Mhatre, S. N. (2019). Testing Web Application using Vulnerability Scan.

International Research Journal of Engineering and Technology (IRJET), 6(5), 265-267.

[70] Nembhard, F. D., Carvalho, M. M., & Eskridge, T. C. (2019). Towards the application of recommender

systems to secure coding. EURASIP Journal on Information Security, 2019(1), 9.

[71] Mahdi, M. and Mohammad, A. H. (2016). USING HASH ALGORITHM TO DETECT SQL INJECTION

VULNERABILITY. INTERNATIONAL JOURNAL OF RESEARCH IN COMPUTER APPLICATIONS AND

ROBOTICS, 4(1), 26-32.

[72] Yadav, S. and Kumar, S. (2018). Web Application Security: Protection from Advanced Persistent Threat.

INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY (IJIRT), 4(12), 954-960.

[73] Rane, V., Chaitrali Rane, C., Shelar, M. and Pinjarkar, V. (2016). Website Security Tool. International

Research Journal of Engineering and Technology (IRJET), 3(3), 299-304.

[74] Fang, Y., Peng, J., Liu, L., & Huang, C. (2018, March). WOVSQLI: Detection of SQL injection behaviors

using word vector and LSTM. In Proceedings of the 2nd International Conference on Cryptography, Security and

Privacy (pp. 170-174).

[75] https://www.kitploit.com/p/sql-injection-tools.html (Friday, June 26,2020 08:28 PM)

http://doi.org/10.1007/s11277-020-07151-2
http://doi.org/10.1007/s11277-020-07151-2

NUML-International Journal of Engineering and Computing (NIJEC) Vol.2, No.(2), Feb (2024)

21

