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Abstract 

This paper studies learning-based testing (LBT) for reactive systems with different learning algorithms and model 10 

checkers. LBT is a technique that requires a learning algorithm to learn the models to generate test cases 

automatically. We have used the generic methodology of LBT to test reactive systems with two different model 

inference algorithms (i.e., IKL, DKL) and two different model checking tools (i.e., NuSMV, SAL). To investigate 

the feasibility of LBT, we integrated our SUTs with these algorithms in LBT and tested if LBT optimizes test 

generation with these algorithms. We tested our SUTs with Boolean data types to check the difference in the 15 

working of model inference and model checking algorithms which we analyzed experimentally. The results show 

that LBT works better with DKL and SAL. DKL is a recently proposed model inference algorithm, and SAL is 

the latest model checker on which the research is being carried out. DKL and SAL algorithms explore errors in 

reactive SUTs with the h LBT framework more quickly and efficiently. 

Keywords: LBT, IKL, DKL, NuSMV, SAL, SUT 20 

 

1. Introduction 

Verification and testing are two important steps to guarantee the quality of software. Verification ensures that 

the system we have designed is performing the desired tasks. Testing is to ensure that the tasks our system has to 

perform are done correctly. Model-based software testing is a technique in which an abstract model of the software 25 

system generates test cases automatically. It was first proposed in 1996 [1]. The model-based testing encompasses 
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the following activities, (a) building a model, (b) devising test selection criteria, (c) generating operational test 

specifications ion from the test selection criteria, (d) generating tests, and (e) executing these tests on the SUT [2]. 

A Model is an abstraction of a system with which we can analyze the expected behavior of that system. The 

research focuses mainly on these research questions and will work on these questions to unveil the interesting 30 

possibilities of the LBT framework.  

Q1: How will the test case generation process be affected if the hypotheses generated by the IKL algorithm or 

another algorithm are model checked with some other model-checking tool?  

Q2: What will be the effect on the performance of the BT framework if we use another multi-bit automaton 

learning algorithm instead of the IKL automaton learning algorithm?  35 

Experimenting with LBT reveals some interesting results in the applicability of LBT to different types of SUTs. 

The paper is organized as follows: Sections I and II introduce model-checking methods, how they have been 

applied for LBT or other testing methodologies, and related work. Section III covers LBT architecture, Section 

IV deals with grammatical inference methods, and Section V covers model checkers used to model check LBT. 

LTL and Counterexample are provided in sections VI and VII. Section VIII describes the experimental setup, 40 

section IX describes case studies, and Section X describes the outcomes of our research and their analysis. Section 

XI of the article concludes with contributions and future work. 

2. Related Work 

Learning-based testing (LBT) is a new methodology for automating iterative black-box software requirements 

testing. Model inference and model-checking techniques are combined in the process. However, several model 45 

inference optimizations are required to provide scalable testing for big systems. The IKL learning algorithm, 

which is an active incremental learning approach for deterministic Kripke structures, is described in this study. 

They explicitly demonstrate the correctness of IKL and explore the optimizations it contains to achieve testing 

scalability. It also analyses a black box heuristic for test termination based on IKL learning convergence [3] 

The LBT is a specification-based testing incorporating the Black-box technique with model checking to verify 50 

and test procedural and reactive systems [4-6]. The fundamental idea behind the LBT architecture is to produce a 

wide-ranging set of test cases by deploying an algorithm for model checking with the help of an incremental 

model learning algorithm such as IKL and DKL. The verification of systems by using learning and model checking 

is known as counterexample-guided abstraction refinement (CEGAR) [7]. The LBT works by integrating three 

components, (a) target black-box SUT and (b) a formal requirement specification to be checked against SUT a (c) 55 

a learned model of SUT. Specification-based testing [8] involves the first two components, the target SUT and t   

formal requirement. The third component is the learned model, the learning aspect in LBT, which uses the 

heuristic method to generate test cases automatically. It learns the black box SUT by using those test cases as 

queries. The Basic Steps of LBT are [6]:  

1) The test case is executed on the SUT first, and then the output is created. The input/output pair is sent into 60 

the learning algorithm, which generates a model.  

2) the Model is validated against the requirement to obtain the Counterexample.  
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3) This is sent into the LBT and utilized as the next test case. The paper discusses two algorithms, IKL [6] and 

the DKL [9]. 

3. LBT Architecture  65 

We will define LBT architecture by using Figure 1. The Mn is passed as input ip to the model checker and a 

requirement as a 𝜑, where 𝜑 is a temporal formula. The 𝜑 will remain the same in a certain testing experiment. 

The model checker checks the model against the requirement specification and identifies a counterexample as an 

input sequence 𝑖𝑝. We can check two types of 𝜑 on Mn ii: e.a safety formula and a liveness formula. If the 𝜑 is a 

safety property, the input 𝑖𝑝 will be a finite sequence ip = ip1,. ..., ipk. In the case of the liveness formula, the 70 

input 𝑖𝑝 may be a finite sequence or an infinite sequence. Infinite counterexamples can be represented as a 

sequence of abw where a is the finite pi. e. i.e., handle, and bw is the infinite part, i.e., the loop. In this case, the 

LBT architecture considers the handle and truncates the loop and considers only a single execution, i.e. 𝑖𝑝 =  𝑎𝑏 

or 𝑖𝑝 =  𝑎𝑏𝑏. LBT uses a random input generator to generate an input sequence 𝑖𝑝 by carefully not repeating any 

previously generated input. The input sequence is constructed by the model checker when it encounters a 75 

counterexample, but when it does not find any counterexamples, the formula gets satisfied and returns true. We 

can get input 𝑖𝑝 from these sources and a new input sequence ip = ip1, ...., ipk . Figure 1 shows that if 𝑖𝑝 is 

constructed from the model checker (either SAL or NuS whichever ever we are using) then it is applied to the 

current model Mn to get the predicted output po = po1, ..., pok for our SUT which will be passed to oracle 

component to get a verdict. It is not possible to practice this step in the case of a random input generator as we do 80 

not know whether the input sequence is either a counterexample to the 𝜑 or not. In all these occurrences the input 

𝑖𝑝 is delivered to the SUT to get the observed output sequence or actual output op = op1, ...., opk. The final step 

of LBT architecture is the oracle step. We can see that if we have got the 𝑖𝑓𝑟𝑜𝑚 𝑡ℎ𝑒 m model checker and have 

a predicted output 𝑝𝑜 then both actual 𝑜𝑝 and predicted output 𝑝𝑜 are passed to oracle. The oracle implements 

the Boolean equality test 𝑜𝑝 =  𝑝𝑜. It can give three types of verdicts on this Boolean equality test. The verdicts 85 

are categorized as failing, warning, and passing. If the test returns true and 𝑖𝑝 was a finite test case, the oracle will 

council’s use it because 𝑜𝑝 is by construction a counterexample against 𝜑. If the test proclaims to be true and the 

test case was pruned from an infinite test case, 𝑖𝑝 then it will be a weakened verdict leading to a warning. We can 

conclude on the fact that we have not seen any difference between observed behavior 𝑜𝑝 and an incorrect 

behaviour 𝑝𝑜. It will be considered a potential error by the system tester. If 𝑜𝑝 ≠  𝑝𝑜 or if no observed output 𝑜𝑝 90 

exists, then it becomes difficult for tor oracle to issue an immediate verdict. Both cases can be possible, it may be 

possible that 𝑜𝑝 is a counterexample to the correctness of the formula 𝜑 or the syntactic structure of the formula 

𝜑 is not bound to 𝑖𝑝 and 𝑜𝑝 due to its simple structure. But since Mn+1 is automatically constructed in response 

to the output behaviour 𝑜𝑝. The model checking step will later confirm this 𝑜𝑝 as an error in this case. 

4. Learning Algorithms in LBT 95 

We will consider two different learning algorithms proposed by different researchers to test with two other 

model checkers with incremental learning-based testing approaches and evaluate the results. 
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4.1 IKL  

IKL [6], is a k-bit extension of Angluin’s ID algorithm. It extends the DFA learning to learn DKS with k-bit 

output using the bit-slicing and lazy partitioning refinement technique. Multi-bit output is necessary for the 100 

practical testing of reactive systems because these systems are not bound to one-bit output [10]. 

 

Figure 1 Learning-Based Testing 

It starts from a k-bit DFA, slices it into a family of k-bit structures, and unlearns all the algorithms jointly by 

learning cooperatively. This cooperation between these structures is known as lazy learning, which supports 105 

frequent model checking during testing. Using lazy learning in IKL is to teach the 1-bit DFA family to produce a 

new k-bit hypothesis Kripke with maximum frequency. After inferring the k 1-bit automata, the sub-direct product 

is applied to assemble these into a single k-bit automaton. The minimization is conducted if the assembled Kripke 

is not in its optimal state space, and there seems to be a need to minimize the states to reduce the large state space, 

as the state space of assembled automaton could be very large. To further reduce the resultant Kripke, t applies L 110 

applies the generalized version (i.e., for Kripke structures) of a DFA minimization algorithm by Jhon Hopcroft 

proposed in 1971 [11]. 

4.2 DKL  

The DKL [9] algorithm is an appendage of Kearns [12] algorithm with some technical changes that is an 

incremental learning algorithm that aims to learn deterministic Kripke structures [13]. The algorithm is designed 115 

to avoid/ prevent unnecessary state space blow-up for intermediate hypotheses constructed by IKL due to the sub-

direct product. Another dimension of DKL is that it does not require a minimization procedure as IKL requires 
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for reducing the state space of the hypothesis. Even after executing a minimization procedure over the intermediate 

hypotheses generated by IKL, some unnecessary states are sometimes left in the hypotheses (i.e., the states that 

are not pr the target automaton). We have integrated both algorithms in asynchronous architecture, shown in 120 

Figure l Checking Algorithms in LBT. 

In this section, we will study two widely used different model checkers. Model checkers are different by various 

properties, i.e., analysis techniques, modeling languages, and counterexample algorithms. All these techniques 

make us select the best-required model checker according to the system's needs under test. 

4.3 NuSMV 125 

NuSMV [14] is an SMV (symbolic model verifier) based model checker based on BDD (Binary Decision 

Diagram) [15]. The SMV only provided BBD-based symbolic model checking functionality, but the NuSMV 

provided us with the extended functionalities inherited from the previous version in many directions. The main 

functionality introduced in NuSMV was integrating the propositional satisfiability-based model-checking 

technique SAT [16]. Nowadays, SAT-based-based techniques are providing great success in the industry and have 130 

opened new research venues for researchers in model checking. The BDD and SAT have solved several problems, 

and due to this, both can be considered complementary model-checking techniques [17]. 

4.4 SAL  

The SAL [18] is the latest model checker with blackboard architecture [19]. The SAL uses an intermediate 

language [19] which is the heart of this framework and serves as a target for translators to extract system 135 

descriptions for languages such as Java, Esteral, Verilog, etc., from the transition system. The main components 

that provide basic functions that can analyze a property in SA include validation tools based on model checking, 

theorem proving, invariant generation, counterexample generation, and abstraction with slicing [21–23]. The 

explicit state algorithms cannot manage larger state systems compared to new model-checking tools that follow 

symbolic state verification algorithms. The symbolic model checking gives the advantage of expressing a larger 140 

state space. 

4.5 Linear Time Properties 

The linear time properties define the trace of a Ts it possesses [8]. The notion of linear and safety properties 

was first used by Lamport in 1977 [24]. Properties fall into three categories, safety properties, liveness properties, 

and invariant. Safety property follows the idea that something bad will not occur during the execution. On the 145 

other hand, liveness property hopes that, eventually, something good will occur during the execution of Ts. A 

property satisfied liveness if it satisfies the idea that something good finally happens. 
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5. Counterexample 

 The process of model checking provides us the facility to achieve the correctness of complex systems by 

getting rid of generated counterexamples and finding errors because of the counterexample trace [25]. Analyzing 150 

the trace makes correcting the model or specification necessary to get the verification process done successfully. 

A counterexample may occur due to incorrect system modeling, which can be corrected by tracing the error and 

remodeling the system [26]. Another error trace may result due to faulty specification, which can be a false 

negative. This type of error can be corrected by analyzing the Counterexample and providing specifications 

against the model to be verified. 155 

6. Experimental Setup 

 We conducted the experiments by running the whole LBT framework on a Linux machine with Core-i7-

7700 with 16 GB of RAM. We evaluated two case studies, a cruise controller (CC) model and an elevator model 

on LBT with incremental learning algorithms IKL and DKL programmed Java. The Specifications were evaluated 

against some errors injected into the learning model. The errors were injected by changing the correct output bits 160 

or by mutating the transitions to make the model erroneous. Each type of experiment was executed ten times for 

that specification. (Since there is an element of randomness in LBT due to the random string generator (see [6]), 

each type of experiment was repeated ten times). The results are averaged to obtain precise values of the result 

parameters. The counterexamples found are used as test cases in the next iteration. 

Case Studies (Reactive Systems) 165 

 The reactive systems are interactive, and nature drives control (or event). These systems need continuous 

interaction with the environment in which they are operating. Some examples of these systems are avionics 

systems, ticket and resource reservation systems, nuclear reactor systems, complex and lifesaving diagnostic 

systems, etc. By using formalism, these systems become convenient and admissible to automatic verification, 

which can be done by using model checkers or can be tested with automated testing. We will consider two 170 

examples of reactive systems as our case studies. The case studies are Vehicle cruise controller (5-Bit) and  Three-

Floor Elevator.  

i. A Vehicle cruise controller (5-Bit): A cruise control (CC) is an automatic vehicle speed control system 

used to restrain the speed of a vehicle. By embedding cruise control, the driver gets the privilege of 

controlling a vehicle's throttle by automatic operation. It works effectively in steady traffic conditions and 175 

improves ease for the driver. A cruise control can be turned on/off explicitly and automatically (i.e., by 

pressing the brakes or the cruise on/off button). A simplified cruise controller can be modeled as a 

deterministic Kripke structure with inputs σ = brake, decelerate, accelerate, button, and an output vector 

of 5 bits. A model of such a cruise control system is presented in Figure 2.  
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 180 

Figure 2 A 5-bit Cruise Controller Model 

 

Table 1 Cruise Controller LTL Requirements Specification 

Specification LTL Formula 

S1 G (mode = cruise & speed = 1 & in = dec → X(speed = 1)) 

S2 G (mode = cruise & speed = 1 & in = acc → X(speed = 1)) 

S3 G (mode = cruise & in = brake → X (mode = disengaged)) 

S4 G (mode = cruise & in = gas → X (mode = disengaged)) 

 

 185 

ii. A Three-Floor Elevator (8-Bit): The Three-Floor elevator model is another embedded safety-critical 

system. A model of such a system is presented in Figure 3, represented as a hierarchical states chart. The 

model has 38 states, an 8-bit output vector, and a set of 4 inputs: c1, c2, c3, and tick. 
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7.  

Figure 3 3-Floor Elevator 190 

 

Table 2 Elevator LTL Requirements Specification 

Specification LTL Formula 

S1 G (! stop → cl) 

S2 G (! stop & X(stop) → X (! cl)) 

S3 G (stop & @1 & cl & in=c1 → X (@1 & !cl)) 

10. Results and Evaluation 

This section of the chapter deals with the findings we observed in our experiments by testing the working of 

two inference algorithms with two different model checkers. The overall results of the experiments are given 195 

below. By experimenting with two model checkers with different state exploration platforms, we found that 

NuSMV takes much less time in state space conversion to OBDD and explores it in less time. But in the case of 

SAL, we observed that the algorithm SAL used to convert the model takes a lot of time to transform the state 
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space in bit vectors and to explore them. It means the time measure is not considered a priority for SAL algorithms 

which deteriorates the performance of SAL. We observed that SAL works better in the context of counterexample 200 

generation. The counterexample generation algorithm of SAL mostly yields smaller counterexamples without 

lasso, which are easy to interpret and execute on practical systems for testing and helps to find the bug in the 

system. SAL worked well with our cruise controller and elevator model with IKL and DKL. The results of the 

case studies observed at SAL works well in the context of time and model-checking algorithm with highly 

abstracted models.  205 

Table 3 Cruise Controller Results S1 

Parameters 
DKL IKL 

NuSMV SAL NuSMV SAL 

HCtime iter (ms) 1.31 1.55 6.23 7.3 

|Hyp| max 8 8 51.9 59.5 

|Hyp| avg 5.1 5.08 16.92 18.27 

BQs 1808.4 1778.2 18775 22747 

RQs 153649 4.7 1E+06 16131 

LBT Iterations 8 8 30.4 29.2 

MCQs 8 8 30.4 29.2 

CEs Uniqueness 0.28 0.45 0.12 0.15 

|CE| 7.02 5 7.03 5 

MCtime iter (ms) 52.76 626.38 34.12 195.74 

MCtime total (ms) 422.1 5011 1003.8 5636.1 

CEtime first (ms) 99.9 918.4 213.8 2060.2 

CEtime avg (ms) 162.69 1211.6 92.55 412.75 

LBT time iter (ms) 97.26 843.18 45.09 203.36 

LBT time total (ms) 778.1 6745.4 1532.2 5873.9 

Precision 0.795 0.94 0.767 0.799 

 

Table 4 Cruise Controller Results S2 

Parameters 
DKL IKL 

NuSMV SAL NuSMV SAL 

HCtime iter (ms) 1.59 1.14 8.63 15.06 

|Hyp| max 8 8 71.2 77.7 

|Hyp| avg 5.06 5.05 19.68 20.63 

BQs 1985.3 1929.7 28301.5 30744 

RQs 18991.1 390674.9 373779.9 1005817 

LBT Iterations 8 8 32.6 37.4 

MCQs 8 8 32.6 37.4 
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CEs Uniqueness 0.23 0.23 0.14 0.13 

|CE| 7 5 7 5 

MCtime iter (ms) 55.04 636.53 39.51 209.69 

MCtime total (ms) 440.3 5092.2 1248.4 7606.8 

CEtime first (ms) 57.3 878.7 340 1491.8 

CEtime avg (ms) 103.55 1174.8 147.33 352.52 

LBT time iter (ms) 65.93 831.74 50.46 228.41 

LBT time total (ms) 527.4 6653.9 1760.4 8602.7 

Precision 0.963 1 0.603 0.879 

 

We also observed that NuSMV tends to work considerably well in the context of time and model-checking 210 

algorithms with Boolean and integer data types. SAL uses an SMT solver, Yices 2.0, which was presented in the 

SMT competition in 2009 and was the winner of that competition due to its type-checking and bit vector-solving 

strategy from the experiments benchmarked the performance of NuSMV, which uses an SAT solver and found 

that SAL does not provide us reliable performance in the context of time. We observed that SAL is in its evolution 

period compared to NuSMV, which has matured with time. There are many venues still not explored by the SAL 215 

community.  

Table 5 Cruise Controller Results S3 

Parameters 
DKL IKL 

NuSMV SAL NuSMV SAL 

HCtime iter (ms) 1.04 0.76 8.39 25.26 

|Hyp| max 7 7 86.3 99.7 

|Hyp| avg 4.5 4.51 21.12 25.26 

BQs 1379.2 1399 34671 28623 

RQs 11534 227670 1038.3 347339.4 

LBT Iterations 7 7 25.6 29.9 

MCQs 7 7 25.6 29.9 

CEs Uniqueness 0.65 0.43 0.39 0.29 

|CE| 6.52 5 5.87 5 

MCtime iter (ms) 47.34 490.26 43.48 236.57 

MCtime total (ms) 331.4 3431.8 1145.3 6816.1 

CEtime first (ms) 61.1 724.9 286.6 1399.4 

CEtime avg (ms) 92.9 1981.6 118.65 598.28 

LBT time iter (ms) 56.49 613.17 51.97 246.01 

LBT time total (ms) 395.4 4292.2 1376.4 7180.7 

Precision 1 0.96 0.614 0.666 
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They are working on it to make SAL better, but it needs better conversion and state space exploration 

algorithms. The NuSMV does not consider the model checking of a single instance of state in its set of states in 220 

the model, which forces us to make some amendments to our inference algorithm. We do not have to provide a 

different solution for this case with SAL. It simply model checks the state space of the single-state model. We 

observed that the inference algorithms differ in learning strategy, leading us to think about the algorithms we use 

for the LBT framework.  

The DKL provides equal iterations in the case of both the model checkers equal to several states of the model 225 

to generate the counterexamples by which the biases in model checking queries we faced with IKL vanishes. The 

inference algorithm IKL learns the model in components by taking the sub-direct product of the model and using 

tables as a data structure to save the intermediate units in memory which takes a lot of time and demands huge 

memory space. Due to this, the state explosion problem often occurs in the n case of large and com Kripke 

structures used by the learning algorithm. The DKL does not learn the model in components and learns an optimal 230 

number of times. The hypothesis it constructs also does not exceed the state size. It learns the model in a fixed 

number of iterations that are equal ta o number of states of the model. The DKL uses an es tree data structure to 

save the model in memory. Due to this, the state space explosion problem does not occur in learning for even 

large and complex Kripke structures. Due to a smaller number of iterations and the data structure it follows, DKL 

takes less time to learn than IKL. 235 

Table 6 Cruise Controller Results S4 

Parameters 
DKL IKL 

NuSMV SAL NuSMV SAL 

HCtime iter (ms) 1 1.186 5.762 5.894 

|Hyp| max 7 7 33.1 47.9 

|Hyp| avg 4.414 4.429 14.277 16.308 

BQs 1216.7 1202.1 21324 21145 

RQs 90770 126236 1285.7 70.7 

LBT Iterations 7 7 17.5 20.9 

MCQs 7 7 17.5 20.9 

CEs Uniqueness 0.806 0.545 0.778 0.319 

|CE| 5.783 5 5.978 5 

MCtime iter (ms) 44.386 486.171 29.810 184.142 

MCtime total (ms) 310.7 3403.2 521.5 3881.5 

CEtime first (ms) 132.5 845.1 473.2 2711.6 

CEtime avg (ms) 165.5 934.45 325,936 1085.91 

LBT time iter (ms) 94.057 556.071 35.689 190.090 

LBT time total (ms) 658.4 3892.5 624.4 4014.9 

Precision 0.748 0.637 0.261 0.488 
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Table 7 Elevator Results S1 

Parameters 
DKL IKL 

NuSMV SAL NuSMV SAL 

HCtime iter (ms) 8.74 6.78 1178 453.81 

|Hyp| max 38 38 846.5 854.1 

|Hyp| avg 20.18 20.17 102.97 114.95 

BQs 34860.6 34171.1 448861 287200 

RQs 3080494 4334029 5169.4 1955.6 

LBT Iterations 38 38 159.3 106.6 

MCQs 38 38 159.3 106.6 

CEs Uniqueness 0.109 0.032 0.023 0.019 

|CE| 4.57 2 3.74 2.01 

MCtime iter (ms) 256.63 2085.23 81.42 282.43 

MCtime total (ms) 9752 79238.8 11172.8 26934.3 

CEtime first (ms) 42.7 176.6 16 175.1 

CEtime avg (ms) 1890.4 4230.5 1262.59 744.91 

LBT time iter (ms) 1837.05 4121.49 1259.48 736.29 

LBT time total (ms) 69808 156616.5 309991 102253 

Precision 0.992 1 0.997 0.989 

 

Table 8 Elevator Results S2 

Parameters 
DKL IKL 

NuSMV SAL NuSMV SAL 

HCtime iter (ms) 8.06 7.75 517.44 259.25 

|Hyp| max 38 38 813.5 856.6 

|Hyp| avg 20.25 20.24 99.3 147.38 

BQs 33412 34015 344776 229303 

RQs 2E+06 3E+06 2520.1 2537.8 

LBT Iterations 38 38 129 86.4 

MCQs 38 38 129 86.4 

CEs Uniqueness 0.368 0.085 0.09 0.049 

|CE| 10.15 3 6.95 3 

MCtime iter (ms) 242.36 2221 79.12 422.9 

MCtime total (ms) 9209.8 84399 9430.3 34114 

CEtime first (ms) 18.9 188.1 18.2 96 

CEtime avg (ms) 1025.3 3678.8 599.62 691.69 

LBT time iter (ms) 956.08 3476.1 596.59 682.22 
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LBT time total (ms) 36331 132090 100919 61532 

Precision 0.932 0.951 0.994 0.986 

 240 

 

Table 1 Elevator Results S3 

Parameters 
DKL IKL 

NuSMV SAL NuSMV SAL 

HCtime iter (ms) 0.34 0.26 14.87 7.62 

|Hyp| max 7 7 9.1 9.7 

|Hyp| avg 4.57 4.57 5.2 6.03 

BQs 518.2 513.8 10044 6982.8 

RQs 700466 93711 145.3 8.2 

LBT Iterations 7 7 13.7 11.5 

MCQs 7 7 13.7 11.5 

CEs Uniqueness 0.167 0.167 0.086 0.12 

|CE| 5 4 4 4 

MCtime iter (ms) 35.97 383.11 10.26 101.83 

MCtime total (ms) 251.8 2681.8 137.9 1170.4 

CEtime first (ms) 21.1 188.9 27.3 205.6 

CEtime avg (ms) 478.18 489.53 29.62 140.66 

LBT time iter (ms) 411.77 432.93 25.22 109.48 

LBT time total (ms) 2882.4 3030.5 367 1260.1 

Precision 1 1 0.847 0.800 

11. Conclusions and Future Work 

 

The analysis showed that SAL is good at generating the Counterexample, so its precision is higher than 245 

NuSMV. As in learning-based testing, we are more concerned about the quality of counterexample generation; 

we consider the algorithm of SAL better than NuSMV because it finds a different counterexample more often and 

it also possesses the distinction that it generates the Counterexample without loop. By getting a counterexample 

without a loop we do not have to truncate the loop part of the Counterexample. We know that the inference 

algorithm IKL learns the model in components while DKL learns the model an optimal number of times. DKL 250 

takes less time to learn than IKL due to a smaller number of iterations and the data structure it follows. If we 

integrate SAL as a model-checking tool and DKL as a model inference algorithm, we can get the best of the LBT 

framework. IKL learns the model by taking the sub-direct product of the model and uses tables as a data structure 

to save the intermediate units in memory which takes a lot of time and demands huge memory space. Due to this, 

the state explosion problem occurs in the case of large and complex systems. 255 
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On the other hand, DKL does not learn the model in components and learns an optimal number of times. The 

hypothesis it constructs also does not exceed the state size. It learns the model in a fixed number of iterations 

equal to several states of the model and uses a tree data structure to save the model in memory. Due to this, the 

state space explosion problem does not occur for even large and complex systems. The analysis showed that SAL 

is good at generating the Counterexample, so its precision is higher than NuSMV. As in learning-based testing, 260 

we are more concerned about the quality of counterexample generation; we consider the algorithm of SAL better 

than NuSMV because it finds a different counterexample more often and it also possesses the distinction that it 

generates the Counterexample without loop. By getting a counterexample without a loop we do not have to 

truncate the loop part of the Counterexample. The only drawback of SAL is that the algorithm of SAL needs more 

effort in the context of time. The research can be extended to writing translators of one model-checking language 265 

to other model-checking languages to ease the task of conversion to different model checkers. It can be made 

possible to produce the state chart from the model and present the Counterexample in the state chart so that the 

tester can understand where the bug resides. The task could be to convert state charts to models and vice versa. In 

incremental learning LBT, whenever a learned hypothesis is generated and the model checked it becomes difficult 

to trace the error transitions in the model according to the Counterexample. It can be done possible to make a 270 

framework to identify the error transitions from the learned model and generate a visualization to make the image 

clear. 
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